Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 27
Filter
1.
Pediatr Neurol ; 144: 97-98, 2023 07.
Article in English | MEDLINE | ID: covidwho-2326647

ABSTRACT

The etiology of acute flaccid myelitis (AFM) has yet to be determined. Viral link has been suggested, but severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-associated AFM has not been reported in children. We describe a three-year-old boy, with AFM associated with coronavirus disease 2019 (COVID-19) infection. In the era of COVID-19 pandemic, patients with AFM should be tested for SARS-CoV-2.


Subject(s)
COVID-19 , Central Nervous System Viral Diseases , Enterovirus D, Human , Enterovirus Infections , Myelitis , Neuromuscular Diseases , Male , Child , Humans , Child, Preschool , Pandemics , COVID-19/complications , Enterovirus Infections/complications , Enterovirus Infections/diagnosis , SARS-CoV-2 , Myelitis/diagnostic imaging , Myelitis/etiology , Myelitis/epidemiology , Neuromuscular Diseases/complications , Central Nervous System Viral Diseases/complications , Central Nervous System Viral Diseases/diagnosis , Central Nervous System Viral Diseases/epidemiology , Acute Disease
3.
researchsquare; 2023.
Preprint in English | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-2764170.v1

ABSTRACT

Purpose: Although viral etiology of central nervous system (CNS) infections such as meningitis and encephalitis are investigated widely worldwide, it remains to be declared under the COVID-19 pandemic. In this study, we aimed to investigate the etiology of viral CNS infections in patients hospitalized in a single referral hospital during the outbreak in Iran. Methods: We retrospectively collected the CSF samples and reviewed the medical records of patients hospitalized with suspected viral CNS infection in Shiraz, a large city in southern Iran, from April 2021 to May 2022. One hundred sixty-six cerebrospinal fluid (CSF) samples were tested primarily for detection of HSV 1 and 2 and were retrospectively analyzed by primers PCR targeted to coronavirus 2 (SARS-COV-2), human herpesviruses 1 to 6 (HHV-1 to -6), polyomaviruses JC, and enteroviruses (EV). Results: Of the total CSF samples analyzed by PCR, 22 (13.3%) were positive for only one viral pathogen, and just one (0.6%) sample was detected with multiple viruses (HSV-1 and CMV). The SARS-COV-2 (n=6) was the second most common viral etiology just after Herpes simplex virus (HSV-1) 6.6% (11 cases). Other detected viruses were CMV for 1.8% (3), VZV for 1.2 % (2), and JC for 0.6% (1) of the cases. Conclusion: According to the above, the spread of SARS-COV-2 during the COVID-19 pandemic, alongside HSV-1, CMV, and VZV in Iran, was significant. As a result, it can play an essential role in development of CNS-related diseases, which required urgent diagnosis and treatment.


Subject(s)
COVID-19 , Meningitis , Encephalitis , Central Nervous System Viral Diseases
4.
MMWR Morb Mortal Wkly Rep ; 71(40): 1265-1270, 2022 Oct 07.
Article in English | MEDLINE | ID: covidwho-2056549

ABSTRACT

Increases in severe respiratory illness and acute flaccid myelitis (AFM) among children and adolescents resulting from enterovirus D68 (EV-D68) infections occurred biennially in the United States during 2014, 2016, and 2018, primarily in late summer and fall. Although EV-D68 annual trends are not fully understood, EV-D68 levels were lower than expected in 2020, potentially because of implementation of COVID-19 mitigation measures (e.g., wearing face masks, enhanced hand hygiene, and physical distancing) (1). In August 2022, clinicians in several geographic areas notified CDC of an increase in hospitalizations of pediatric patients with severe respiratory illness and positive rhinovirus/enterovirus (RV/EV) test results.* Surveillance data were analyzed from multiple national data sources to characterize reported trends in acute respiratory illness (ARI), asthma/reactive airway disease (RAD) exacerbations, and the percentage of positive RV/EV and EV-D68 test results during 2022 compared with previous years. These data demonstrated an increase in emergency department (ED) visits by children and adolescents with ARI and asthma/RAD in late summer 2022. The percentage of positive RV/EV test results in national laboratory-based surveillance and the percentage of positive EV-D68 test results in pediatric sentinel surveillance also increased during this time. Previous increases in EV-D68 respiratory illness have led to substantial resource demands in some hospitals and have also coincided with increases in cases of AFM (2), a rare but serious neurologic disease affecting the spinal cord. Therefore, clinicians should consider AFM in patients with acute flaccid limb weakness, especially after respiratory illness or fever, and ensure prompt hospitalization and referral to specialty care for such cases. Clinicians should also test for poliovirus infection in patients suspected of having AFM because of the clinical similarity to acute flaccid paralysis caused by poliovirus. Ongoing surveillance for EV-D68 is critical to ensuring preparedness for possible future increases in ARI and AFM.


Subject(s)
Asthma , COVID-19 , Enterovirus D, Human , Enterovirus Infections , Myelitis , Respiratory Tract Infections , Adolescent , Asthma/epidemiology , Central Nervous System Viral Diseases , Child , Disease Outbreaks , Enterovirus Infections/epidemiology , Humans , Myelitis/epidemiology , Neuromuscular Diseases , Respiratory Tract Infections/epidemiology , Rhinovirus , United States/epidemiology
5.
Proc Natl Acad Sci U S A ; 119(35): e2200960119, 2022 08 30.
Article in English | MEDLINE | ID: covidwho-1991765

ABSTRACT

Although increasing evidence confirms neuropsychiatric manifestations associated mainly with severe COVID-19 infection, long-term neuropsychiatric dysfunction (recently characterized as part of "long COVID-19" syndrome) has been frequently observed after mild infection. We show the spectrum of cerebral impact of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, ranging from long-term alterations in mildly infected individuals (orbitofrontal cortical atrophy, neurocognitive impairment, excessive fatigue and anxiety symptoms) to severe acute damage confirmed in brain tissue samples extracted from the orbitofrontal region (via endonasal transethmoidal access) from individuals who died of COVID-19. In an independent cohort of 26 individuals who died of COVID-19, we used histopathological signs of brain damage as a guide for possible SARS-CoV-2 brain infection and found that among the 5 individuals who exhibited those signs, all of them had genetic material of the virus in the brain. Brain tissue samples from these five patients also exhibited foci of SARS-CoV-2 infection and replication, particularly in astrocytes. Supporting the hypothesis of astrocyte infection, neural stem cell-derived human astrocytes in vitro are susceptible to SARS-CoV-2 infection through a noncanonical mechanism that involves spike-NRP1 interaction. SARS-CoV-2-infected astrocytes manifested changes in energy metabolism and in key proteins and metabolites used to fuel neurons, as well as in the biogenesis of neurotransmitters. Moreover, human astrocyte infection elicits a secretory phenotype that reduces neuronal viability. Our data support the model in which SARS-CoV-2 reaches the brain, infects astrocytes, and consequently, leads to neuronal death or dysfunction. These deregulated processes could contribute to the structural and functional alterations seen in the brains of COVID-19 patients.


Subject(s)
Brain , COVID-19 , Central Nervous System Viral Diseases , SARS-CoV-2 , Astrocytes/pathology , Astrocytes/virology , Brain/pathology , Brain/virology , COVID-19/complications , COVID-19/pathology , Central Nervous System Viral Diseases/etiology , Central Nervous System Viral Diseases/pathology , Humans , Post-Acute COVID-19 Syndrome
6.
Virol J ; 19(1): 70, 2022 04 20.
Article in English | MEDLINE | ID: covidwho-1862136

ABSTRACT

BACKGROUND: Enterovirus (EV), parechovirus (HPeV), herpes simplex virus 1 and 2 (HSV1/2) are common viruses leading to viral central nervous system (CNS) infections which are increasingly predominant but exhibit deficiency in definite pathogen diagnosis with gold-standard quantitative PCR method. Previous studies have shown that droplet digital PCR (ddPCR) has great potential in pathogen detection and quantification, especially in low concentration samples. METHODS: Targeting four common viruses of EV, HPeV, HSV1, and HSV2 in cerebrospinal fluid (CSF), we developed a multiplex ddPCR assay using probe ratio-based multiplexing strategy, analyzed the performance, and evaluated it in 97 CSF samples collected from patients with suspected viral CNS infections on a two-channel ddPCR detection system. RESULTS: The four viruses were clearly distinguished by their corresponding fluorescence amplitude. The limits of detection for EV, HPeV, HSV1, and HSV2 were 5, 10, 5, and 10 copies per reaction, respectively. The dynamic range was at least four orders of magnitude spanning from 2000 to 2 copies per reaction. The results of 97 tested clinical CSF specimens were identical to those deduced from qPCR/qRT-PCR assays using commercial kits. CONCLUSION: The multiplex ddPCR assay was demonstrated to be an accurate and robust method which could detect EV, HPeV, HSV1, and HSV2 simultaneously. It provides a useful tool for clinical diagnosis and disease monitoring of viral CNS infections.


Subject(s)
Central Nervous System Viral Diseases , Enterovirus Infections , Enterovirus , Herpesvirus 1, Human , Parechovirus , Picornaviridae Infections , Enterovirus/genetics , Enterovirus Infections/diagnosis , Herpesvirus 1, Human/genetics , Herpesvirus 2, Human/genetics , Humans , Parechovirus/genetics , Real-Time Polymerase Chain Reaction/methods
7.
J Mol Biol ; 434(3): 167243, 2022 02 15.
Article in English | MEDLINE | ID: covidwho-1851574

ABSTRACT

Brain organoids are self-organized three-dimensional aggregates generated from pluripotent stem cells. They exhibit complex cell diversities and organized architectures that resemble human brain development ranging from neural tube formation, neuroepithelium differentiation, neurogenesis and gliogenesis, to neural circuit formation. Rapid advancements in brain organoid culture technologies have allowed researchers to generate more accurate models of human brain development and neurological diseases. These models also allow for direct investigation of pathological processes associated with infectious diseases affecting the nervous system. In this review, we first briefly summarize recent advancements in brain organoid methodologies and neurodevelopmental processes that can be effectively modeled by brain organoids. We then focus on applications of brain organoids to investigate the pathogenesis of neurotropic viral infection. Finally, we discuss limitations of the current brain organoid methodologies as well as applications of other organ specific organoids in the infectious disease research.


Subject(s)
Brain , Central Nervous System Viral Diseases , Organoids , Brain/growth & development , Brain/virology , Central Nervous System Viral Diseases/virology , Humans , Neurogenesis , Organoids/virology
8.
Viruses ; 14(3)2022 03 18.
Article in English | MEDLINE | ID: covidwho-1760845

ABSTRACT

Pathogenesis of viral infections of the central nervous system (CNS) is poorly understood, and this is partly due to the limitations of currently used preclinical models. Brain organoid models can overcome some of these limitations, as they are generated from human derived stem cells, differentiated in three dimensions (3D), and can mimic human neurodevelopmental characteristics. Therefore, brain organoids have been increasingly used as brain models in research on various viruses, such as Zika virus, severe acute respiratory syndrome coronavirus 2, human cytomegalovirus, and herpes simplex virus. Brain organoids allow for the study of viral tropism, the effect of infection on organoid function, size, and cytoarchitecture, as well as innate immune response; therefore, they provide valuable insight into the pathogenesis of neurotropic viral infections and testing of antivirals in a physiological model. In this review, we summarize the results of studies on viral CNS infection in brain organoids, and we demonstrate the broad application and benefits of using a human 3D model in virology research. At the same time, we describe the limitations of the studies in brain organoids, such as the heterogeneity in organoid generation protocols and age at infection, which result in differences in results between studies, as well as the lack of microglia and a blood brain barrier.


Subject(s)
COVID-19 , Central Nervous System Viral Diseases , Zika Virus Infection , Zika Virus , Blood-Brain Barrier , Brain/pathology , Humans , Organoids , Zika Virus Infection/pathology
9.
J Virol ; 96(4): e0196921, 2022 02 23.
Article in English | MEDLINE | ID: covidwho-1702819

ABSTRACT

Unlike SARS-CoV-1 and MERS-CoV, infection with SARS-CoV-2, the viral pathogen responsible for COVID-19, is often associated with neurologic symptoms that range from mild to severe, yet increasing evidence argues the virus does not exhibit extensive neuroinvasive properties. We demonstrate SARS-CoV-2 can infect and replicate in human iPSC-derived neurons and that infection shows limited antiviral and inflammatory responses but increased activation of EIF2 signaling following infection as determined by RNA sequencing. Intranasal infection of K18 human ACE2 transgenic mice (K18-hACE2) with SARS-CoV-2 resulted in lung pathology associated with viral replication and immune cell infiltration. In addition, ∼50% of infected mice exhibited CNS infection characterized by wide-spread viral replication in neurons accompanied by increased expression of chemokine (Cxcl9, Cxcl10, Ccl2, Ccl5 and Ccl19) and cytokine (Ifn-λ and Tnf-α) transcripts associated with microgliosis and a neuroinflammatory response consisting primarily of monocytes/macrophages. Microglia depletion via administration of colony-stimulating factor 1 receptor inhibitor, PLX5622, in SARS-CoV-2 infected mice did not affect survival or viral replication but did result in dampened expression of proinflammatory cytokine/chemokine transcripts and a reduction in monocyte/macrophage infiltration. These results argue that microglia are dispensable in terms of controlling SARS-CoV-2 replication in in the K18-hACE2 model but do contribute to an inflammatory response through expression of pro-inflammatory genes. Collectively, these findings contribute to previous work demonstrating the ability of SARS-CoV-2 to infect neurons as well as emphasizing the potential use of the K18-hACE2 model to study immunological and neuropathological aspects related to SARS-CoV-2-induced neurologic disease. IMPORTANCE Understanding the immunological mechanisms contributing to both host defense and disease following viral infection of the CNS is of critical importance given the increasing number of viruses that are capable of infecting and replicating within the nervous system. With this in mind, the present study was undertaken to evaluate the role of microglia in aiding in host defense following experimental infection of the central nervous system (CNS) of K18-hACE2 with SARS-CoV-2, the causative agent of COVID-19. Neurologic symptoms that range in severity are common in COVID-19 patients and understanding immune responses that contribute to restricting neurologic disease can provide important insight into better understanding consequences associated with SARS-CoV-2 infection of the CNS.


Subject(s)
Angiotensin-Converting Enzyme 2/immunology , COVID-19/immunology , Central Nervous System Viral Diseases/immunology , Microglia/immunology , SARS-CoV-2/physiology , Virus Replication/immunology , Angiotensin-Converting Enzyme 2/genetics , Animals , COVID-19/genetics , Central Nervous System/immunology , Central Nervous System/virology , Central Nervous System Viral Diseases/genetics , Central Nervous System Viral Diseases/virology , Chemokines/genetics , Chemokines/immunology , Disease Models, Animal , Humans , Mice , Mice, Transgenic , Microglia/virology , Neurons/immunology , Neurons/virology , Virus Replication/genetics
10.
Int J Neuropsychopharmacol ; 25(1): 1-12, 2022 01 12.
Article in English | MEDLINE | ID: covidwho-1467332

ABSTRACT

From the earliest days of the coronavirus disease 2019 (COVID-19) pandemic, there have been reports of significant neurological and psychological symptoms following Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) infection. This narrative review is designed to examine the potential psychoneuroendocrine pathogenic mechanisms by which SARS-CoV-2 elicits psychiatric sequelae as well as to posit potential pharmacologic strategies to address and reverse these pathologies. Following a brief overview of neurological and psychological sequelae from previous viral pandemics, we address mechanisms by which SARS-CoV-2 could enter or otherwise elicit changes in the CNS. We then examine the hypothesis that COVID-19-induced psychiatric disorders result from challenges to the neuroendocrine system, in particular the hypothalamic-pituitary-adrenal stress axis and monoamine synthesis, physiological mechanisms that are only further enhanced by the pandemic-induced social environment of fear, isolation, and socioeconomic pressure. Finally, we evaluate several FDA-approved therapeutics in the context of COVID-19-induced psychoneuroendocrine disorders.


Subject(s)
COVID-19/virology , Central Nervous System Viral Diseases/virology , Central Nervous System/virology , Neurosecretory Systems/virology , SARS-CoV-2/pathogenicity , Anti-Inflammatory Agents/therapeutic use , Antidepressive Agents/therapeutic use , Antiviral Agents/therapeutic use , COVID-19/physiopathology , COVID-19/psychology , Central Nervous System/drug effects , Central Nervous System/metabolism , Central Nervous System/physiopathology , Central Nervous System Viral Diseases/drug therapy , Central Nervous System Viral Diseases/physiopathology , Central Nervous System Viral Diseases/psychology , Host-Pathogen Interactions , Humans , Neuroimmunomodulation , Neurosecretory Systems/drug effects , Neurosecretory Systems/metabolism , Neurosecretory Systems/physiopathology , Prognosis , Risk Factors , Virus Internalization , COVID-19 Drug Treatment
11.
Viruses ; 13(7)2021 07 15.
Article in English | MEDLINE | ID: covidwho-1448933

ABSTRACT

Virus-induced infections of the central nervous system (CNS) are among the most serious problems in public health and can be associated with high rates of morbidity and mortality, mainly in low- and middle-income countries, where these manifestations have been neglected. Typically, herpes simplex virus 1 and 2, varicella-zoster, and enterovirus are responsible for a high number of cases in immunocompetent hosts, whereas other herpesviruses (for example, cytomegalovirus) are the most common in immunocompromised individuals. Arboviruses have also been associated with outbreaks with a high burden of neurological disorders, such as the Zika virus epidemic in Brazil. There is a current lack of understanding in Brazil about the most common viruses involved in CNS infections. In this review, we briefly summarize the most recent studies and findings associated with the CNS, in addition to epidemiological data that provide extensive information on the circulation and diversity of the most common neuro-invasive viruses in Brazil. We also highlight important aspects of the prion-associated diseases. This review provides readers with better knowledge of virus-associated CNS infections. A deeper understanding of these infections will support the improvement of the current surveillance strategies to allow the timely monitoring of the emergence/re-emergence of neurotropic viruses.


Subject(s)
Central Nervous System Diseases/virology , Central Nervous System Infections/epidemiology , Prion Diseases/epidemiology , Alphavirus/pathogenicity , Brazil/epidemiology , Central Nervous System/virology , Central Nervous System Diseases/metabolism , Central Nervous System Diseases/physiopathology , Central Nervous System Infections/virology , Central Nervous System Viral Diseases/physiopathology , Central Nervous System Viral Diseases/virology , Enterovirus/pathogenicity , Flavivirus/pathogenicity , Herpesviridae/pathogenicity , Humans , Nervous System Diseases/epidemiology , Nervous System Diseases/virology , Prion Diseases/physiopathology , Prions/metabolism , Prions/pathogenicity , Simplexvirus/pathogenicity , Virus Diseases/virology , Viruses/pathogenicity , Zika Virus/pathogenicity
12.
Pan Afr Med J ; 39: 147, 2021.
Article in English | MEDLINE | ID: covidwho-1377121

ABSTRACT

INTRODUCTION: the World health organisation (WHO) African Region reported the first confirmed COVID-19 case caused by the SARS-CoV-2 on 25th February 2020, and the first case for the East Southern Africa (ESA) sub-region was on 5th March 2020. Almost all countries in the ESA sub region implemented the WHO-recommended preventive measures variably after the notification of community transmission of the COVID-19 disease. This resulted in the disruption of the outpatient, immunization surveillance, and the related supply chain activities. METHODS: a comparative analysis study design of secondary acute flaccid paralysis (AFP) surveillance data received from the East and Southern Africa sub-region countries to evaluate the effect of the COVID-19 pandemic in the AFP field surveillance for the same time period of March to December 2019 and 2020. RESULTS: we observed that 52.4% of second stool samples were received in the laboratory within 72 hours from March to December 2019, and only 48.1% in the same period of 2020. A 4.3% decline with a p-value of <0.0001 (95% CI, ranges from 2.326% to 6.269%). Similarly, we noted a 4.7% decline in the number of reported AFP cases in the ESA sub-region for March to December 2020 compared to the same period in 2019, a p-value of less than 0.001 (95% CI ranges from 2.785 to 6.614). For the percentage of stool adequacy, we observed a 3.37% decline for April in 2020 compared to April 2019 with a p-value of less than 0.001 (95% CI ranges from 2.059 to 4.690). CONCLUSION: we observed a decline in the core AFP surveillance (non polio) NP-AFP rate, and percentage of stool adequacy in countries severely affected by the COVID-19 disease. These countries implemented stringent transmission prevention measures such as lock-down and international transportation restrictions.


Subject(s)
COVID-19 , Central Nervous System Viral Diseases/diagnosis , Feces/virology , Myelitis/diagnosis , Neuromuscular Diseases/diagnosis , Population Surveillance/methods , Adolescent , Africa, Eastern/epidemiology , Africa, Southern/epidemiology , Central Nervous System Viral Diseases/epidemiology , Child , Child, Preschool , Female , Humans , Infant , Infant, Newborn , Male , Myelitis/epidemiology , Neuromuscular Diseases/epidemiology
13.
J Chem Neuroanat ; 117: 102006, 2021 11.
Article in English | MEDLINE | ID: covidwho-1330944

ABSTRACT

Nowadays, Covid-19 is considered a serious health problem worldwide. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a novel human coronavirus that has sparked a global pandemic of the coronavirus disease of 2019 (COVID-19). It is well known that the Corona Virus attacks mainly the respiratory system. Meanwhile, it has been established that coronavirus infection can extend beyond the respiratory system and unfortunately, can also affect our nervous system. Multiple neurological symptoms and signs had been documented during and post covid conditions. This virus gets access to the central nervous system (CNS) via the bloodstream leading to infect the endothelial lining cells. Also, it was reported that the virus can enter the peripheral nervous system via retrograde neuronal routes. The virus could be internalized in nerve synapses through endocytosis, transported retrogradely, and spread trans-synoptically to other brain regions. This minireview highlights the possible routes by which SARS-CoV-2 can invade the central nervous system (CNS) and its pathophysiology and manifestation.


Subject(s)
Brain/physiopathology , COVID-19/physiopathology , Central Nervous System Viral Diseases/physiopathology , SARS-CoV-2/physiology , Animals , Brain/virology , COVID-19/complications , COVID-19/epidemiology , Central Nervous System/physiopathology , Central Nervous System/virology , Central Nervous System Viral Diseases/etiology , Humans , SARS-CoV-2/isolation & purification
14.
J Med Virol ; 93(3): 1304-1313, 2021 03.
Article in English | MEDLINE | ID: covidwho-1196501

ABSTRACT

The outbreak of coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), has become a significant and urgent threat to global health. This review provided strong support for central nervous system (CNS) infection with SARS-CoV-2 and shed light on the neurological mechanism underlying the lethality of SARS-CoV-2 infection. Among the published data, only 1.28% COVID-19 patients who underwent cerebrospinal fluid (CSF) tests were positive for SARS-CoV-2 in CSF. However, this does not mean the absence of CNS infection in most COVID-19 patients because postmortem studies revealed that some patients with CNS infection showed negative results in CSF tests for SARS-CoV-2. Among 20 neuropathological studies reported so far, SARS-CoV-2 was detected in the brain of 58 cases in nine studies, and three studies have provided sufficient details on the CNS infection in COVID-19 patients. Almost all in vitro and in vivo experiments support the neuroinvasive potential of SARS-CoV-2. In infected animals, SARS-CoV-2 was found within neurons in different brain areas with a wide spectrum of neuropathology, consistent with the reported clinical symptoms in COVID-19 patients. Several lines of evidence indicate that SARS-CoV-2 used the hematopoietic route to enter the CNS. But more evidence supports the trans-neuronal hypothesis. SARS-CoV-2 has been found to invade the brain via the olfactory, gustatory, and trigeminal pathways, especially at the early stage of infection. Severe COVID-19 patients with neurological deficits are at a higher risk of mortality, and only the infected animals showing neurological symptoms became dead, suggesting that neurological involvement may be one cause of death.


Subject(s)
Brain/virology , COVID-19/virology , Central Nervous System Viral Diseases/virology , Neurons/virology , SARS-CoV-2/pathogenicity , Animals , COVID-19/mortality , COVID-19/physiopathology , Central Nervous System Viral Diseases/mortality , Central Nervous System Viral Diseases/physiopathology , Cerebrospinal Fluid/virology , Humans , Neural Pathways , SARS-CoV-2/isolation & purification
15.
Curr Neuropharmacol ; 19(1): 92-96, 2021.
Article in English | MEDLINE | ID: covidwho-1154160

ABSTRACT

The pandemic novel coronavirus disease (COVID-19) has become a global concern in which the respiratory system is not the only one involved. Previous researches have presented the common clinical manifestations including respiratory symptoms (i.e., fever and cough), fatigue and myalgia. However, there is limited evidence for neurological and psychological influences of SARS-CoV-2. In this review, we discuss the common neurological manifestations of COVID-19 including acute cerebrovascular disease (i.e., cerebral hemorrhage) and muscle ache. Possible viral transmission to the nervous system may occur via circulation, an upper nasal transcribrial route and/or conjunctival route. Moreover, we cannot ignore the psychological influence on the public, medical staff and confirmed patients. Dealing with public psychological barriers and performing psychological crisis intervention are an important part of public health interventions.


Subject(s)
COVID-19/physiopathology , Central Nervous System Viral Diseases/physiopathology , Cerebrovascular Disorders/physiopathology , Myalgia/physiopathology , Nervous System Diseases/physiopathology , Blood-Brain Barrier , COVID-19/psychology , COVID-19/transmission , Central Nervous System Viral Diseases/psychology , Central Nervous System Viral Diseases/transmission , Cerebral Hemorrhage/physiopathology , Conjunctiva , Dizziness/physiopathology , Ethmoid Bone , Headache/physiopathology , Health Personnel/psychology , Humans , Nervous System Diseases/psychology , SARS-CoV-2
16.
Sci Transl Med ; 13(584)2021 03 10.
Article in English | MEDLINE | ID: covidwho-1127537

ABSTRACT

Acute flaccid myelitis (AFM) recently emerged in the United States as a rare but serious neurological condition since 2012. Enterovirus D68 (EV-D68) is thought to be a main causative agent, but limited surveillance of EV-D68 in the United States has hampered the ability to assess their causal relationship. Using surveillance data from the BioFire Syndromic Trends epidemiology network in the United States from January 2014 to September 2019, we characterized the epidemiological dynamics of EV-D68 and found latitudinal gradient in the mean timing of EV-D68 cases, which are likely climate driven. We also demonstrated a strong spatiotemporal association of EV-D68 with AFM. Mathematical modeling suggested that the recent dominant biennial cycles of EV-D68 dynamics may not be stable. Nonetheless, we predicted that a major EV-D68 outbreak, and hence an AFM outbreak, would have still been possible in 2020 under normal epidemiological conditions. Nonpharmaceutical intervention efforts due to the ongoing COVID-19 pandemic are likely to have reduced the sizes of EV-D68 and AFM outbreaks in 2020, illustrating the broader epidemiological impact of the pandemic.


Subject(s)
Central Nervous System Viral Diseases/epidemiology , Central Nervous System Viral Diseases/virology , Enterovirus D, Human/physiology , Myelitis/epidemiology , Myelitis/virology , Neuromuscular Diseases/epidemiology , Neuromuscular Diseases/virology , Disease Susceptibility , Epidemiological Monitoring , Humans , Models, Biological , Spatio-Temporal Analysis , United States/epidemiology
18.
Drug Discov Ther ; 14(6): 262-272, 2021 Jan 23.
Article in English | MEDLINE | ID: covidwho-1067907

ABSTRACT

The novel coronavirus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was identified in 2019 in Wuhan, China. Clinically, respiratory tract symptoms as well as other organs disorders are observed in patients positively diagnosed coronavirus disease 2019 (COVID-19). In addition, neurological symptoms, mainly anosmia, ageusia and headache were observed in many patients. Once in the central nervous system (CNS), the SARS-CoV-2 can reside either in a quiescent latent state, or eventually in actively state leading to severe acute encephalitis, characterized by neuroinflammation and prolonged neuroimmune activation. SRAS-CoV-2 requires angiotensin-converting enzyme 2 (ACE2) as a cell entry receptor. The expression of this receptor in endothelial cells of blood-brain barrier (BBB) shows that SRAS-CoV-2 may have higher neuroinvasive potential compared to known coronaviruses. This review summarizes available information regarding the impact of SRAS-CoV-2 in the brain and tended to identify its potential pathways of neuroinvasion. We offer also an understanding of the long-term impact of latently form of SARS-CoV-2 on the development of neurodegenerative disorders. As a conclusion, the persistent infection of SRAS-CoV-2 in the brain could be involved on human neurodegenerative diseases that evolve a gradual process, perhapes, over several decades.


Subject(s)
COVID-19/virology , Central Nervous System Viral Diseases/virology , Neurodegenerative Diseases/virology , Neurons/virology , SARS-CoV-2/pathogenicity , Viral Tropism , Animals , COVID-19/complications , Central Nervous System Viral Diseases/metabolism , Central Nervous System Viral Diseases/pathology , Host-Pathogen Interactions , Humans , Neurodegenerative Diseases/metabolism , Neurodegenerative Diseases/pathology , Neurons/metabolism , Neurons/pathology , Virus Latency
19.
Arch Med Res ; 51(7): 721-722, 2020 10.
Article in English | MEDLINE | ID: covidwho-1023457
SELECTION OF CITATIONS
SEARCH DETAIL